nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.44 35-40
Optimization of Leaching Process Parameters of Hard Rock Uranium Ore
Email:
DOI: 10.13426/j.cnki.yky.2025.01.01
摘要:

随着开采深度的增加,某硬岩铀矿矿性发生变化,在矿石堆浸过程中出现矿堆板结现象。为了解决矿堆板结问题,研究了淋浸剂酸度、喷淋强度、装柱高度、粒度等对矿堆板结的影响。结果表明,在淋浸剂酸度50.0 g/L、喷淋强度40.0 L/(m2·h)、浸出周期30 d条件下,柱浸试验后无板结,-10 mm矿石的铀浸出率达83.40%。800 t矿石的中试试验结果证实,在浸出剂酸度高、喷淋强度大时,矿堆无板结现象,铀浸出率可达86.57%。

Abstract:

Due to the change in ore properties of a certain hard rock uranium mine with the increase of mining depth, the heap leaching process of the ore encountered the problem of heap scaling. In order to solve the problem, the effects of leaching agent acidity, spray intensity, column height and particle size on heap scaling were studied. The results show that when the acidity of the leaching agent is 50.0 g/L, the spray intensity is 40.0 L/(m2·h), and the leaching period is 30 days, there is no scaling in the column leaching test, and the uranium leaching rate of-10 mm ore reaches 83.40%. The results of the 800 t ore pilot test confirms that there is no scaling in the heap with high acidity and large spray intensity, and the uranium leaching rate reaches 86.57%.

References

[1] 李建华.中国铀矿堆浸的技术现状与发展[C]//中国核学会.中国核科学技术进展报告:第一卷.北京:原子能出版社,2009:74-78.

[2] 周晓,蔡晓君,刘湘晨,等.热交换器污垢形成机理及其影响因素分析[J].石油化工设备,2014,43(1):84-88.ZHOU Xiao,CAI Xiaojun,LIU Xiangchen,et al.Analysis of heat exchanger fouling formation mechanism and influencing factors[J].Petro-Chemical Equipment,2014,43(1):84-88(in Chinese).

[3] 余润兰,刘松军,曹钰,等.铀矿酸法堆浸中结垢的形成及其预防[J].铀矿冶,1998,11(1):24-30.YU Runlan,LIU Songjun,CAO Yu,et al.Incrustation for uranium ore acid heap leaching formation and precaution[J].Uranium Mining and Metallurgy,1998,11(1):24-30(in Chinese).

[4] 钟平汝,李铁球,毛拥军,等.渗滤浸出法处理抚州铀矿矿石[J].铀矿冶,2004,23(1):13-18.ZHONG Pingru,LI Tieqiu,MAO Yongjun,et al.Uranium ore treatment by percolation leaching at Fuzhou uranium mine[J].Uranium Mining and Metallurgy,2004,23(1):13-18(in Chinese).

[5] 徐志明,沈艺雯.基于Kern-Seaton模型构建的微生物污垢模型[J].东北电力大学学报,2017,37(6):40-44.XU Zhiming,SHEN Yiwen.Research on the modeling of microbial fouling model based on Kern-Seaton model[J].Journal of Northeast Electric Power University,2017,37(6):40-44(in Chinese).

[6] 李永晶,王磊.污垢诱导期影响因素分析及研究现状[J].广东化工,2011,38(7):225-226.LI Yongjing,WANG Lei.The analysis and present research situation on the influence factors of fouling induction period[J].Guangdong Chemical Industry,2011,38(7):225-226(in Chinese).

[7] 吕杨.工业含盐废水处理工艺中换热器结垢过程及机理研究[D].银川:宁夏大学,2020.

[8] 宫海燕,李彩虹.杂质对溶液结晶过程影响的研究进展[J].化学与生物工程,2010,27(3):9-12.GONG Haiyan,LI Caihong.Research progress of influence of impurities on solution crystallization[J].Chemistry & Bioengineering,2010,27(3):9-12(in Chinese).

[9] 李尚远,陈明阳,李丛奎.铀、金、铜矿石堆浸原理与实践[M].北京:原子能出版社,1997:229-230.

[10] 李海涛,李然,刘涛,等.阻垢剂对硫酸钡结晶动力学参数影响研究[J].西南石油大学学报(自然科学版),2022,44(5):175-184.LI Haitao,LI Ran,LIU Tao,et al.The study of effect of inhibitors on BaSO4 crystallization kinetic parameters[J].Journal of Southwest Petroleum University(Science & Technology Edition),2022,44(5):175-184(in Chinese).

[11] 吴志根,颜子涵,邱兰,等.高盐工业废水浓缩工艺中的换热器结垢机理和阻垢技术[J].同济大学学报(自然科学版),2023,51(6):932-942.WU Zhigen,YAN Zihan,QIU Lan,et al.Review of heat exchanger fouling mechanism and anti-scaling technology in high-salt industrial wastewater concentration process[J].Journal of Tongji University(Science & Technology Edition),2023,51(6):932-942(in Chinese).

[12] 周明,董辉,冀文雄,等.海上油田两种缓蚀剂与其他油水处理药剂配伍性研究[J].精细石油化工,2023,40(3):17-21.ZHOU Ming,DONG Hui,JI Wenxiong,et al.Study on compatibility of two corrosion inhibitors and other oil water treatment agents in offshore oilfield[J].Speciality Petrochemicals,2023,40(3):17-21(in Chinese).

[13] 金永辉,王治富,李源流.延长油田储层注水过程中碳酸钙垢形成与抑制实验分析[J].当代化工,2023,52(10):2373-2377.JIN Yonghui,WANG Zhifu,LI Yuanliu.Experimental analysis of calcium carbonate scale formation and inhibition during reservoir water injection in Yanchang oilfield[J].Contemporary Chemical Industry,2023,52(10):2373-2377(in Chinese).

[14] 宋良业,王大卫,张磊,等.油田某区块结垢预测及阻垢剂性能评价[J].化学工程师,2020,34(7):47-50.SONG Liangye,WANG Dawei,ZHANG Lei,et al.Scaling prediction and scale inhibitor performance evaluation in a block of oil field[J].Chemical Engineer,2020,34(7):47-50(in Chinese).

[15] 唐帅.硫酸钙结晶机理及化学阻垢研究[D].南京:东南大学,2021.

[16] 何晓东.致密砂岩储层水力压裂中的水岩化学作用机制研究[D].西安:长安大学,2023.

[17] 许海瑞,张艳,楼一珊.磷酸盐型阻垢剂的合成及及其阻垢机理研究[J].化学工程师,2024,38(5):111-116.XU Hairui,ZHANG Yan,LOU Yishan.Study on the synthesis and scale inhibition mechanism of phosphate type scale inhibitors[J].Chemical Engineer,2024,38(5):111-116(in Chinese).

[18] 何花,董发勤,何平.混合助晶剂促进大长径比硫酸钙晶须的调控研究[J].人工晶体学报,2012,41(6):1679-1685.HE Hua,DONG Faqin,HE Ping.Regulation preparation of large aspect ratio calcium sulfate whisker in the presence of mixed crystallization promoting agents[J].Journal of Synthetic Crystals,2012,41(6):1679-1685(in Chinese).

[19] 梁现红,谭琦,张传祥,等.大长径比硫酸钙晶须的制备及形貌研究[J].矿产保护与利用,2017,37(6):87-92.LIANG Xianhong,TAN Qi,ZHANG Chuanxiang,et al.Study on the preparation and morphology of large aspect ratio calcium sulfate whisker[J].Conservation and Utilization of Mineral Resources,2017,37(6):87-92(in Chinese).

[20] 方羊,窦焰,孙祥斌,等.Al3+对水热法制备α-CaSO4·0.5H2O晶须的影响[J].高校化学工程学报,2017,31(2):413-419.FANG Yang,DOU Yan,SUN Xiangbin,et al.Effects of Al3+ on α-CaSO4·0.5H2O whisker formation in hydrothermal conditions[J].Journal of Chemical Engineering of Chinese Universities,2017,31(2):413-419(in Chinese).

[21] 王力,马继红,郭增维,等.水热法制备硫酸钙晶须及其结晶形态的研究[J].材料科学与工艺,2006,14(6):626-629.WANG Li,MA Jihong,GUO Zengwei,et al.Study on the preparation and morphology of calcium sulfate whisker by hydrothermal synthesis method[J].Materials Science and Technology,2006,14(6):626-629(in Chinese).

[22] 黄明清,吴爱祥,严佳龙,等.高碱低渗透性氧化铜矿渗透试验研究[J].湿法冶金,2011,30(3):210-213.HUANG Mingqing,WU Aixiang,YAN Jialong,et al.Permeability of alkaline low-permeability copper oxide by column leaching[J].Hydrometallurgy of China,2011,30(3):210-213(in Chinese).

Basic Information:

DOI:10.13426/j.cnki.yky.2025.01.01

China Classification Code:TD868

Citation Information:

[1]康佳红,邓建国,曹彪等.硬岩铀矿淋浸工艺参数优化[J].铀矿冶,2025,44(03):35-40.DOI:10.13426/j.cnki.yky.2025.01.01.

Fund Information:

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search